Compounds with different pharmacological profiles enhance the neurite outgrowth in Human iPSC-derived neurons

Cindy Duchemin, Emile Andriambeloson, Stéphanie Wagner

NEUROFIT SAS, boulevard Sébastien Brant
Parc d’Innovation, 67400 ILLKIRCH, FRANCE

www.neurofit.com

We would like to thank CCG for providing CellNerve. The authors also wish to thank Dr. Sabine Linge for her technical assistance to culture-CeNeur.neurons.

Introduction

There is a vast amount of evidence indicating that neurotrophic factors (neurotrophins) play a major role in the development, maintenance and survival of neurons. Neurotrophic factors, which repair damaged neurons through stimulation of neurite outgrowth, may be important for the regeneration of the damaged neurons. The development of new compounds which could mimic the neurotrophin effect without their limit appears to be a good strategy for the development of new therapeutics in neurodegenerative diseases.

Objectives

- To study and measure the neurite sprouting in human iPSC-derived neurons (iCell neurons, Cellular Dynamics International, Madison) in culture under basal condition
- To assess the neurogenic responses of iCell neurons to compounds with different pharmacological profiles

Experimental design

Cryopreserved iCell neurons were thawed and plated according to Cellular Dynamics International instructions. Pharmacological treatments were carried out after the cell adhesion. At different timepoints in cultures, iCell neurons were immunostained against βIII tubulin (neuronal marker). Neurite detection and measure were performed high content cell analyzer (Cell Insight, ThermoFisher Scientific).

Immuo-labelling

Brain-derived neurotrophic factor (BDNF) significantly enhanced the neurite outgrowth in iCell neurons. Similar effect was observed with other family of neurotrophicins such as fibroblast growth factor (FGF) and nerve growth factor (NGF).

Neurite outgrowth response of iCell neurons to small molecules

Time course of neurite outgrowth in iCell neurons under basal condition

Key points

- Spontaneous and time-dependent increase of neurite length but not the number under basal culture condition
- Neurite length was further enhanced in response to pharmacological treatment with neurogenic potential
- Large dynamic range of neurite outgrowth response at 10 days; suitable timepoint condition for screening purposes

Conclusion

These results suggest that iCell neurons respond to different mechanisms of neurogenic agents and thus can be instrumental to screen neurotrophic compounds.

Donospeptil (Acetylcholine esterase inhibitor used in Alzheimer’s disease) and Imipramine (tricyclic antidepressant used in major depressive disorders) significantly enhanced neurite outgrowth in iCell neurons.